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Motivation Statistical network inference Induced correlation

Inference across Multiple Networks

Often, data consist of a collection of networks with aligned vertices:
Multilayer networks
Time-varying networks
Multiple samples of networks
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Motivation Statistical network inference Induced correlation

Implications of Dependence in Joint Spectral
Inference across Multiple Networks

Why spectral inference on multiple networks?

To build statistical analogues of classical multisample methods
for network-valued data

Many spectral methods simultaneously embed all the networks
into a common low-dimensional Euclidean space & assume
independence across the multiple network realizations.

1 Embedding networks into a Euclidean space allows us to utilize
tools from traditional statistics.

2 The independence assumption rarely holds in real-data
applications.

The main goal is to bring awareness to the induced correlation
that may arise in such joint network embeddings.
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Statistical network inference

What are some inference tasks on multiple networks with
aligned vertices?

Consistent estimation of the underlying model parameters
Asymptotic normality results
Subsequent inference tasks:

1 2-graph or M -graph hypothesis testing
2 Change point detection on vertices, vertex clouds or whole-graphs
3 Clustering, Classification, etc.

What are the moving parts in joint network embedding proce-
dures?

1 Network model
2 Technique to aggregate networks
3 Embedding method
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Random Dot Product Graph (RDPG)

Each vertex i is associated with a latent position Xi ∈ Rd drawn from a
distribution F , with support supp(F ) ⊂ Bd(1)

Given Xi, Xj , the adjacency matrix A of a sampled graph G is given by:

Aij =

{
1 ,with probability ⟨Xi, Xj⟩
0 ,otherwise.

Note: The d-RDPG model is specified only up to orthogonal transformation of
its latent positions.

Why d-RDPG?
d-RDPG is an analytically tractable model.
Yet, encompasses a broad range of random graph models such as
positive semidefinite SBM and Erdos-Renyi.
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Adjacency Spectral Embedding (ASE)
The d-dimensional adjacency spectral embedding (ASE) of A is obtained by

X̂A = UAS
1/2
A ∈ Rn×d

SA ∈ Rd×d := diagonal matrix whose entries are the top d eigenvalues of
|A| = (ATA)1/2

UA ∈ Rn×d := n× d matrix whose columns are the orthonormal eigenvectors
corresponding to the eigenvalues in SA.

Under RDPG, ASE consistently estimates (up to orthogonal transforma-
tion) the data matrix X ∈ Rn×d (Sussman et al, 2014).
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OMNIBUS Embedding (Levin et al. 2017)
Joint-RDPG model: Given data matrix X, for each k ∈ [m],

A(k) ∼ RDPG(X)

Note: A(k)’s are assumed independent, and the same data
matrix X is used to generate all m graphs.

Omnibus matrix:

M =


A(1) A(1)+A(2)

2
A(1)+A(3)

2 · · · A(1)+A(m)

2
A(2)+A(1)

2 A(2) A(2)+A(3)

2 · · · A(2)+A(m)

2
...

...
. . .

...
...

A(m)+A(1)

2
A(m)+A(2)

2
A(m)+A(3)

2 · · · A(m)

 ∈ Rmn×mn

OMNI Embedding:

OMNI(A(1), A(2), · · · , A(m), d) = ASE(M,d) = UMS
1/2
M ∈ Rmn×d
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Advantages of OMNI embedding
1 Consistency and asymptotic normality results when the graphs

are sampled from the same distribution
2 The omnibus embedding produces m distinct estimates for each

vertex
3 The omnibus matrix incorporates a priori an alignment.

Multi-scale inference:

ASE(M,d) =

[
X̂

Ŷ

]
=



Estimated latent position of vertex 1 in G1

Estimated latent position of vertex 2 in G1

...
Estimated latent position of vertex n in G1

Estimated latent position of vertex 1 in G2

Estimated latent position of vertex 2 in G2

...
Estimated latent position of vertex n in G2


∈ R2n×d

Konstantinos Pantazis JHU Dependence in Joint Spectral Network Inference December 17, 2022 8 / 19



Motivation Statistical network inference Induced correlation

Advantages of OMNI embedding
1 Consistency and asymptotic normality results when the graphs

are sampled from the same distribution
2 The omnibus embedding produces m distinct estimates for each

vertex
3 The omnibus matrix incorporates a priori an alignment.

Multi-scale inference:

ASE(M,d) =

[
X̂

Ŷ
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Understanding induced correlation
OMNI embedding induces correlation across estimates.

CLT (Avanti et al., 2016): Consider A ∼ d-RDPG(X) and
X̂A = UAS

1/2
A . Under mild assumptions, there exists an

orthogonal matrix Q such that
√
n(X̂AQ−X)i

D−→ N (0,Σ(Xi))

.
CLT for correlated networks: Consider two correlated networks
A,B ∼ d-RDPG(X) with edge-correlation ρ, i.e.,

correlation(Aij , Bij) = ρ for all i, j.

Let X̂A = UAS
1/2
A and X̂B = UBS

1/2
B their embeddings. Then,

there exist orthogonal matrices Q1, Q2

√
n(X̂AQ1 − X̂BQ2)i

D−→ N (0, 2(1− ρ)Σ(Xi))
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OMNI induces “flat" correlation between estimates

CLT for OMNI estimates: Let M denote the omnibus matrix. Let
X̂M = UMS

1/2
M and denote the estimates from network A(s) as

X̂
(s)
M . For fixed indices s1, s2, there exist orthogonal matrix W

√
n
(
(X̂

(s1)
M − X̂

(s2)
M )W

)
i

D−→ N (0,
1

2
Σ(Xi))

CLT for correlated networks:
√
n(X̂AQ1 − X̂BQ2)i

D−→ N (0, 2(1− ρ)Σ(Xi))

OMNI embedding induces correlation equal to ρ = 0.75 be-
tween estimates across all networks.
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Induced correlation in OMNI embedding
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Real-data experiment
“Flat" correlation can mask the signal present in a time-series of networks
application

Application: Analysis of Aplysia californica escape motor program of Hill et al. (2020)
20 min recording of action for 82 neurons
One minute into the recording, stimulus was applied to nerve 9.

The stimulus results to initial rapid galloping followed by a slower rhythmic
crawling

To extract a network time series from the recording
Bin the motor program into 24 bins, each ≈ 50 second long
Convert each bin into a weighted matrix
Embed these 24 matrices using OMNI procedure.
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Real-data experiment

First graph =⇒ relaxing state.
Second graph =⇒ firing state.
Rest of the graphs =⇒ galloping and
crawling states.

OMNI:
Successfully detects the stimulus in the second graph
However, the induced flat correlation masks the transition from
galloping to crawling and creates an artificial similarity between
graphs 1 and some of the graphs k > 2 in the embedded space
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Generalized OMNI (genOMNI)
R-RDPG model: Extend Joint-RDPG model to incorporate
latent correlation across networks
Generalized omnibus matrix: The block entries of the
generalized matrix M are convex combinations of A(i)’s.

CLT for genOMNI estimates:
√
n
(
(X̂

(s1)
M − X̂

(s2)
M )W

)
i

D−→ N (0, 2(1− ρ(s1, s2))Σ(Xi)), where

ρ(s1, s2) = 1−
∑m

q=1(α(s1, q)− α(s2, q))
2

2m2︸ ︷︷ ︸
method-induced correlation

+

∑
q<l

(
α(s1, q)− α(s2, q))(α(s2, l)− α(s1, l)

)
ρq,l

m2︸ ︷︷ ︸
model-inherent correlation

and α(k, q) is the total weight put on A(q) in the k-th block-row of M.
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Real data experiment cont’d

Dampened OMNI:

M
(k,ℓ)
damp =

{
A(k)+ℓA(ℓ)

ℓ+1 if k < ℓ,

A(k) if k = ℓ

Detects the stimulus in the second graph
Distinguishes the relaxing state from the other states.
Captures (imperfectly) the transition from galloping (graphs 3, 4)
to crawling (graphs 5-24).
Picks out an unstable dynamic (graphs 13-24) not apparent from
simple visual inspection of the firing traces.
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Summary

1 Identify and analyze the phenomenon of induced correlation, which is
an artifice in joint network embeddings.

2 First to show theoretical guarantees (consistency, asymptotic normality )
under a correlated multiple network model.

3 Extend previous methodology to a family of models making genOMNI
suitable for meaningful subsequent inference, especially for time
series of networks applications.
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Future work: corr2omni algorithm
Given a correlation structure for a collection of networks, choose
weights in the genOMNI setting that would reproduce (approximately)
this structure in the embedded space.
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Future work
Identify and analyze the induced correlation in other joint embedding
procedures (e.g., COSIE-MASE, Arroyo et al. 2020).
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Thank You !

Paper: https://www.jmlr.org/papers/v23/20-944.html

Contact: kpantaz1@jhu.edu
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